

Development Portfolio of Chugai Pharmaceutical

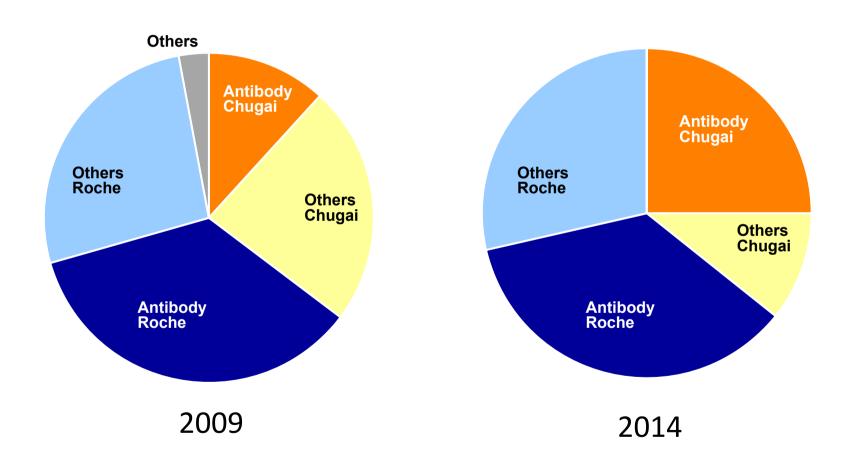
CHUGAI PHARMACEUTICAL CO., LTD.
Executive Vice President
Head of Project & Lifecycle Management Unit
Yutaka Tanaka

December 16, 2014

Forward-Looking Statements

This presentation may include forward-looking statements pertaining to the business and prospects of Chugai Pharmaceutical Co., Ltd. (the "Company"). These statements reflect the Company's current analysis of existing information and trends. Actual results may differ from expectations based on risks and uncertainties that may affect the Company's businesses.

Although this presentation includes information regarding pharmaceuticals (including products under development), the information is not intended as any advertisement and/or medical advice.

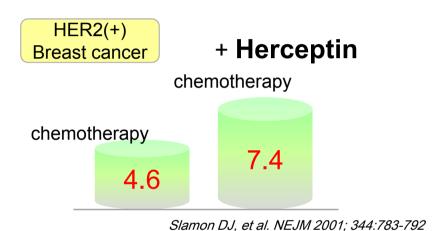

Product/Project Portfolio

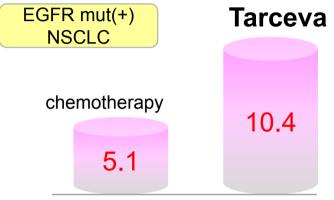
	P1,P2		P3, Filed		Launched		ed		
							AVA	RIT	TAR
Cancer	XEL	GC33	CKI27	BRAF	ALC	PER	HER	PER	KAD
	PI3K	PI3K	CD79b	KAD	GA101	PD-L1	XEL	NEU	ALC
Bone/joint					BON		ACT ALF	EDR BON	SVE
Kidney							MIR	EPO	OXA
Transplantation/ immunity/ infection							CEL	PEG	COPE
Autoimmunity	ACT			ACT	SA237				
Central nervous system	mGluR5	МАО-В	GABA		Αβ				
Other fields	ACE910	CIM331	URC102		alL-13			SIG	

Antibody Projects in Development

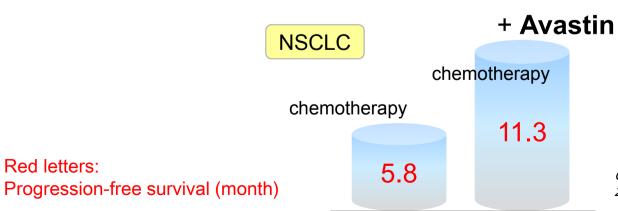
^{*} Number-of-projects basis (each line-extension was counted)

Oncology Portfolio


Cytotoxio			Molecular Targetii	g Therapy		
		Cytotoxicity	Tumor cell targeting		Immuno- therapy	
Colorectal		Xeloda		Avastin		
Breast	HER2+	Xeloda	Herceptin, Perjeta, Kadcyla			
	HER2-			Avastin		
Lung	EGFR+		Tarceva		_	
	ALK+		Alecensa	Avastin	RG7446* (PDL1)	
	Others				(. 5=.)	
Stomach	HER2+	Xeloda	Herceptin, Perjeta*, Kadcyla*			
	HER2-					
Blood			Rituxan, GA101*, Polatuzumab vedotin*			
Others			Tarceva,GC33*, CKI27*, vemurafenib*, pictilisib*, taselisib*	Avastin		


Red letters:

Contribution of Targeting Therapies


Tumor cell targeting

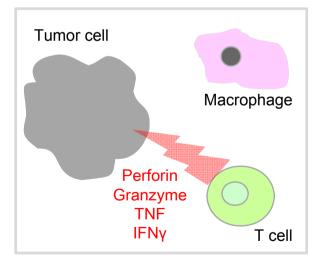
Clin Cancer Res 2014, 20, 2001-10

Anti-angiogenesis

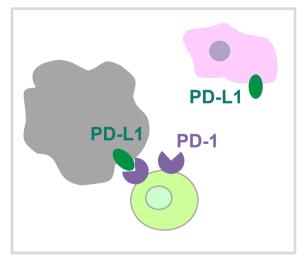
Gray R et al. JCO 2009; 27(30):4966-72

Expectations for Cancer Immunotherapy

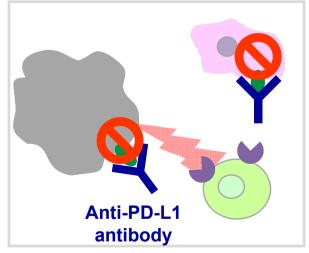
Progress of Cancer Immunotherapy


Immunomodulator

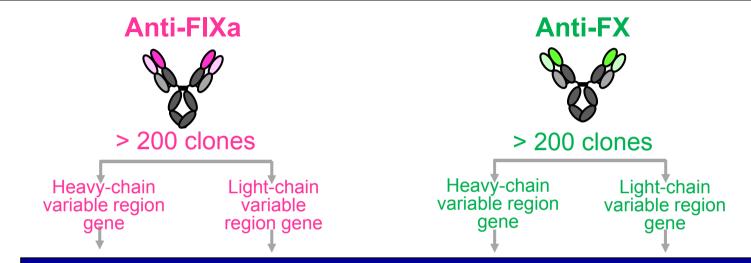
Cancer vaccine


Immuno-checkpoint inhibitor T cell therapy

Immuno-checkpoint inhibitors:
Break immune tolerance of tumor cells


[conceptual illustration]

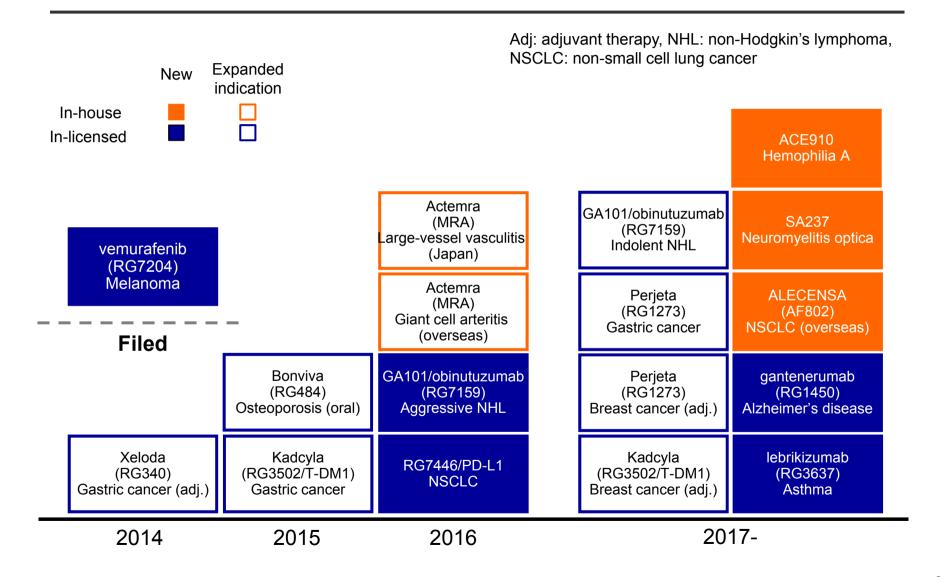
Activated T cells attack tumor cells as non-self antigens by using perforin, granzyme and other factors (immune response)


Tumor cells and macrophages express PD-L1 and suppress activation of T cell (immune tolerance)

Anti-PD-L1 antibodies block PD-1/PD-L1 pathway (immune-checkpoint) and the immune response to tumor resumes

Bispecific Antibody ACE910

Bispecific IgG (> 40,000 combinations)


Antibody Structure Optimization (ASO)

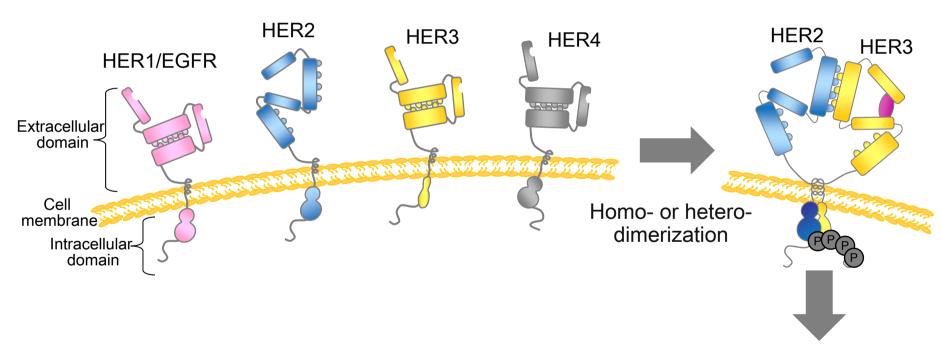
ACE910

- FVIII-mimetic activity
- Pharmacokinetic profile
- Immunogenicity
- Physicochemical stability
- Efficient manufacturability

Projected Submissions

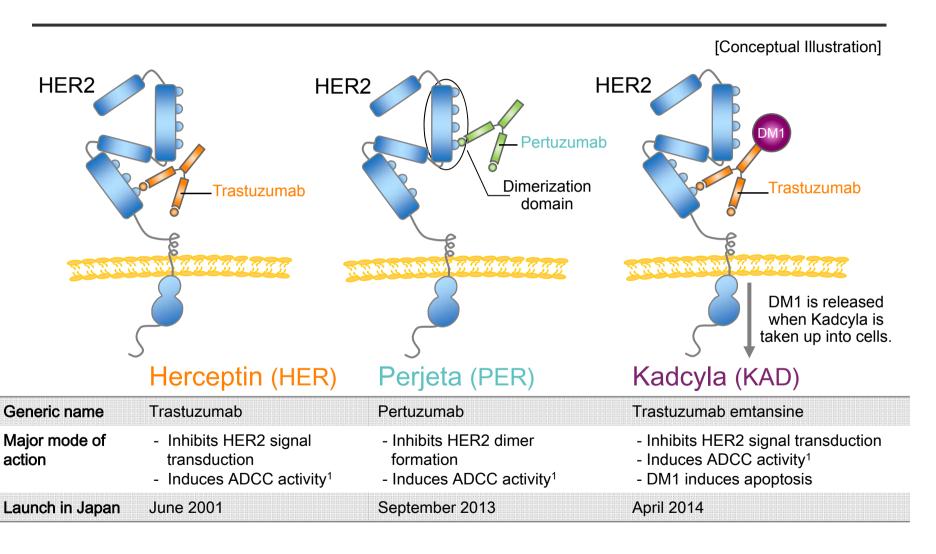
Overview of HER2 Franchise

CHUGAI PHARMACEUTICAL CO., LTD. Oncology Lifecycle Management Dept. Tsuyoshi Takasuka

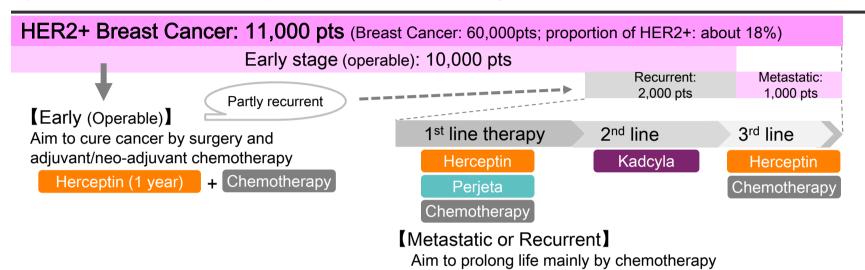

December 16, 2014

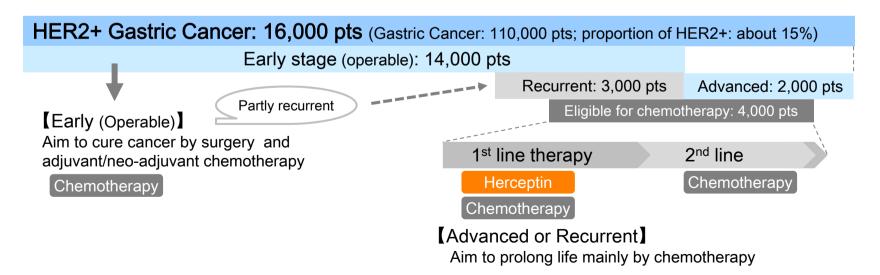
Function of the HER Family and Tumor Growth

■ HER = <u>H</u>uman <u>E</u>pidermal Growth Factor <u>R</u>eceptor

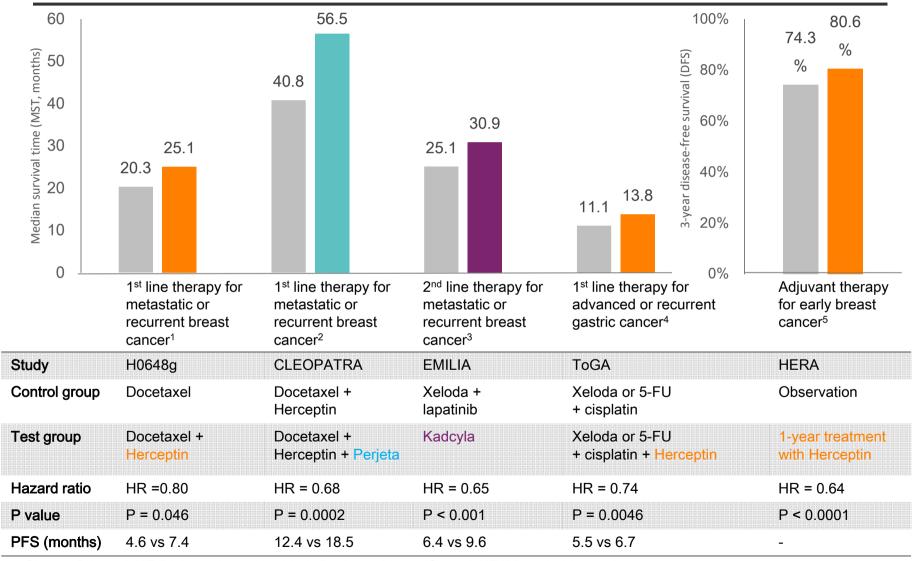

[Conceptual Illustration]

Dimers transmit signals, such as to accelerate cell proliferation and inhibit apoptosis

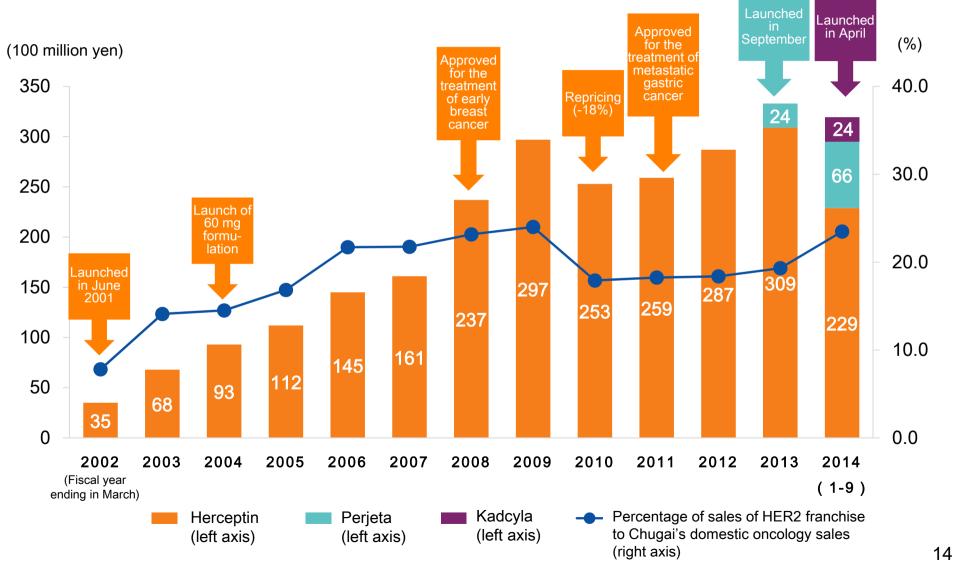

Mode of Action of Anti-HER2 Antibodies



Number of Yearly Breast or Gastric Cancer Patients in Japan (In-house Estimation) and the Positioning of the HER2 Franchise

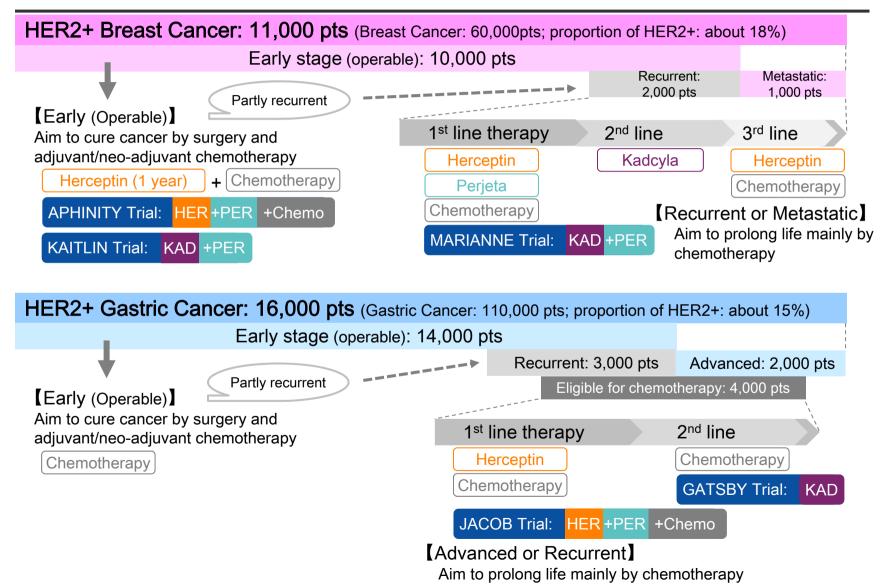


HER2 Franchise Contribution to Survival

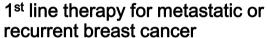


^{1.} Slamon DJ, et al. NEJM 2001; 344:783-792, 2. Roche, 3. Verma S, et al. NEJM 2012; 367:1783-1791,

^{4.} Bang YJ, et al. Lancet 2010; 376:687-697, 5. Smith I, et al. Lancet 2007; 369:29-36


Sales Trend in Japan

Future Development Plan



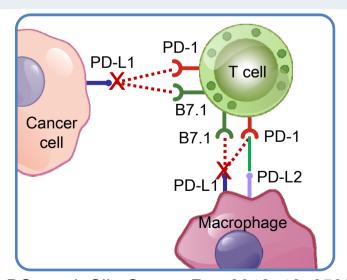
Regimens Expected to be Clinically Available in the Near Future

Adjuvant therapy for early breast cancer

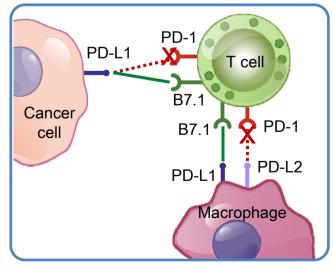
Study	MARIANNE trial	APHINITY trial
Phase	Phase III global study	Phase III global study
Number of patients	1,092	4,803
Control group	Herceptin + taxane	Chemotherapy + Herceptin + placebo
Test group	Kadcyla + Perjeta	Chemotherapy + Herceptin + Perjeta
Primary endpoint	Progression-free survival (PFS)	Disease-free survival (DFS)
Data to be published in	2015	2016

Overview of anti PD-L1 Antibody RG7446 (MPDL3280A)

CHUGAI PHARMACEUTICAL CO., LTD.
Oncology Lifecycle Management Dept.
Mikio Sakai


December 16, 2014

Mode of Action of Anti PD-L1 Antibody and Anti PD-1 Antibody


Anti PD-L1 antibody

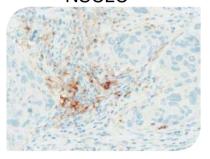
- Inhibits the binding between PD-L1 expressed on tumors and PD-1 and B7.1 expressed on T cells
- Inhibits the transmission of inhibitory signals from two pathways to T cells^{1, 2, 3)}
- Because the anti-PD-L1 antibody does not inhibit the binding between PD-L2 and PD-1, little influence is expected on the homeostasis of the immune system, thus it is not likely to induce autoimmune responses¹⁾

Anti PD-1 antibody

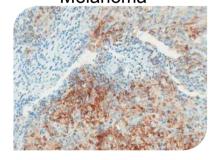
- Inhibits the binding between PD-L1 expressed on tumors and PD-1 expressed on T cells
- Inhibits the transmission of inhibitory signals to T cells, but does not inhibit the transmission of other inhibitory signals initiated by the binding between PD-L1 and B7.1^{1, 2, 3)}
- Because anti-PD-1 antibody inhibits the binding between PD-L2 and PD-1, some influences are expected on the homeostasis of the immune system, thus it is likely to induce autoimmune responses^{1, 4)}

- 1. Chen DS, et al. Clin Cancer Res 2012; 18: 6580-6587; 2. Paterson AM, et al. J Immunol 2011; 187: 1097-1105
- 3. Yang J, et al. J Immunol 2011; 187: 1113-1119; 4. Brahmer JR, et al. N Engl J Med 2012; 366: 2455-2465

PD-L1 Expression in Patients with Different Types of Cancer



PD-L1 is widely expressed on tumor cells or tumor-infiltrating immune cells


PD-L1 prevalence^{1,2,3)}

T a. h a	Incidence	Non-trial study ^{1, 2, *, ‡)}	Phase	I study ³⁾
Tumor type	Japan 2010 ⁵⁾	Immune cells ^{§)} (≈%)	Immune cells*)	Tumor cell ^{‡)}
NSCLC (Non-small cell lung cancer)	107,241	45%	26%	24%
Renal cell carcinoma	21,130	20%	25%	10%
Melanoma	NA	40%	36%	5%
Bladder cancer ⁴⁾	19,219	N/A	27%	11%
Head and neck squamous cell carcinoma	15,560 ⁵⁾	33%	28%	19%
Gastric cancer	125,730	N/A	18%	5%
Colorectal cancer	118,979	45%	35%	1%
Pancreatic cancer	32,330	N/A	12%	4%

PD-L1+ immune cells NSCLC¹⁾

PD-L1+ tumor cells
Melanoma¹⁾

^{*} PD-L1 positive defined as patients with ≥5% tumour infiltrating immune cells positive for PD-L1;

[‡] Surgical tumour specimens; § PD-L1 positive defined as patients with ≥5% tumour cells positive for PD-1;

^{1.} Kohrt H, et al. SITC 2013; 2. Roche/Genentech data; 3. Herbst R, et al. Nature 2014; 515: 563-567; 4. Powles T, et al. Nature 2014; 515: 558-562; 5. Cancer statistics in Japan 2013 (Center for Cancer Control and Information Services, National Cancer Center)

Anti PD-L1 Antibody / Anti PD-1 Antibody Under Development in Japan

		Indication F	P1	P2	P3	Filed	Approved
	RG7446	NSCLC					
수	MEDI4736	NSCLC	NSCLC				
Anti PD-L1 antibody		Merkel cell cancer					
Ant an	MSB0010718C	Gastric cancer					
		NSCLC					
		Melanoma					
>		Renal cell carcinoma					
antibody	Nivolumab	NSCLC					
:	Mivolulliab	Head and neck cancer					
Anti PD-1		Gastric cancer					
nti F		Esophageal cancer					
⋖	Pembrolizumab	NSCLC					
		Melanoma					

The development stage shows the most advanced study within each indication. 20

PD-L1 and Companion Diagnostics

Different companion diagnostics are under development with different cut-off values

	Nivolumab	Pembrolizumab	RG7446	MEDI4736
	(aPD-1)	(aPD-1)	(aPD-L1)	(aPD-L1)
CoDX	Dako/IHC	Dako/IHC	Ventana/IHC	Ventana/IHC
(antibody)	(28-8)	(22C3)	(SP142)	(SP263)
Using cells	Tumor	Tumor	Tumor infiltrated Immune cell (or Tumor)	-
Cut-off PD-L1 expression	5% PD-L1 (cut-off)	1% PD-L1 (cut-off)	≥10% (IHC: 3) ≥ 5% (IHC: 2/3) ≥ 1% (IHC: 1/2/3)	-

(Chugai data)

Global Development of RG7446

Indication	P1	P2	P3
NSCLC (monotherapy / combination therapy)	✓	✓	✓
Bladder cancer	✓	✓	✓
Renal cell carcinoma (monotherapy / combination therapy)	✓	✓	
Malignant melanoma	✓		
Solid tumor (monotherapy / combination therapy)	✓		
Colorectal cancer	\checkmark		
Blood cancer (combination therapy)	✓		
•	Study ongoir	ng 🗸 S	Study planned (Roche data)

Response Rate by PD-L1 Expression in Patients with NSCLC

High response rate has been observed in the subgroup with high PD-L1 expression on tumor-infiltrating cells^{1, 2)}

PD-L1 Expression (Immune cell)	Overall Response Rate (%)	Progression of disease (%)
IHC 3	83 (5/6)	17 (1/6)
IHC 2/3	46 (6/13)	23 (3/13)
IHC 1–3	31 (8/26)	38 (10/26)
All patients ^{§)}	23 (12/53)	40 (21/53)

[§] Including 7 patients with unknown PD-L1 status

^{1.} Soria JC, et al. ESMO 2013 (Abstract 3408)

^{2.} Herbst R, et al. Nature 2014; 515: 563-567

Clinical Trials of RG7446 in Patients with Locally Advanced or Metastatic NSCLC

FIR (PII): PD-L1+ Locally Advanced or Metastatic NSCLC (primary endpoint: overall response rate)

RG7446 1,200mg, iv, every 3 weeks

BIRCH (PII): PD-L1+ Locally Advanced or Metastatic NSCLC (primary endpoint: overall response rate)

RG7446 1,200mg, iv, every 3 weeks

POPLAR (PII): Locally Advanced or Metastatic NSCLC (2nd/3rd line) (primary endpoint: overall survival)


```
NSCLC
(2nd/3rd line) (n=287)
```

Docetaxel 75mg/m², iv, every 3 weeks

RG7446 1,200mg, iv, every 3 weeks

OAK (PIII): Locally Advanced or Metastatic NSCLC (2nd line) (primary endpoint: overall survival)


```
NSCLC
(2nd line) (n=850)
```

Docetaxel 75mg/m², iv, every 3 weeks RG7446

1,200mg, iv, every 3 weeks

Response Rate by PD-L1 Expression in Patients with Bladder Cancer (Judged by Physicians)

PD-L1 Expression (Immune cell)	Overall Response Rate (%, 95% CI)	PD-L1+ vs PD-L1- Overall Response Rate (%, 95% CI)
IHC 3 (n=10)	60 (27, 85)	52 (24, 60 <u>)</u>
IHC 2 (n=23)	48 (27, 68)	52 (34, 69)
IHC 1 (n=24)	17 (6, 37)	44 (0. 00)
IHC 0 (n=12)	8 (0, 35)	14 (6, 28)

One patient with unknown IHC status not included in table

- The overall response rate was 52% in patients with IHC 2/3, most of them pre-treated with platinum-based therapies.
- The overall response rate was 14% in patients with IHC 0/1.
- Rapid tumor shrinkage was observed.
- Of the 22 responders, 19 maintained tumor shrinkage at the time of data cut-off.
- The median progression free survival was 24 weeks in patients with IHC 2/3, and eight weeks in patients with IHC 0/1.

Clinical Trials of RG7446 in Patients with Locally Advanced or Metastatic Bladder Cancer

Breakthrough Therapy Designation granted by the FDA for bladder cancer

Phase I

- High response rate was observed in PD-L1 positive patients
- Phase I results provide support for pivotal studies

Phase II (Primary endpoint: Overall Response Rate)

Locally Advanced or Metastatic
Bladder Cancer (n=330)

RG7446
1,200mg, iv, every 3 weeks


Phase III

- ●To be initiated in 2014
- Participation from Japan has been decided

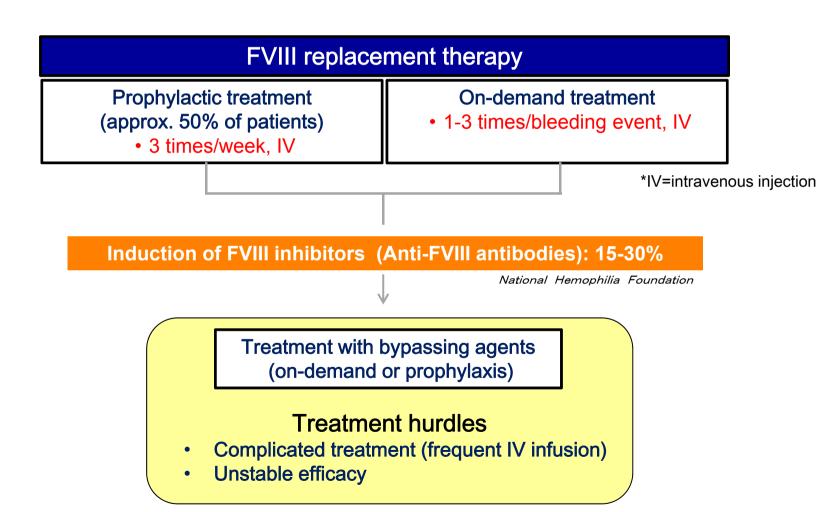
Overview of ACE910

Antibody mimicking Coagulation factor Eight, by connecting factor 9 & 10

CHUGAI PHARMACEUTICAL CO., LTD.
Primary Lifecycle Management Dept.
Hiroshi Motegi

December 16, 2014

About Hemophilia A

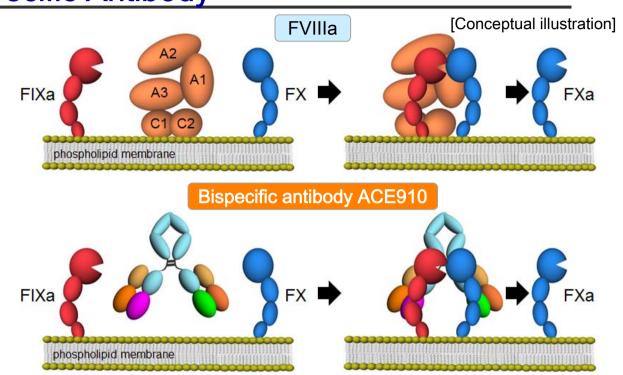

- Definition
 - Hemophilia A is an inherited deficiency in clotting factor VIII (FVIII), which causes impairment of hemostatic function (bleeding disorder)
- Causes
 - X-linked recessive trait (prevalence: approx. one in 10,000 male births)
- Symptoms
 - Difficulty of hemostasis of hemorrhages caused by bruise or overload on joint results in large hematoma as well as difficulty of hemostasis in case of wound, surgery and tooth extraction
 - Complication such as arthritis damages QOL of hemophilia patients

	Severe	Moderate	Mild
% of normal FVIII	<1%	1 ~ 5%	5~40%
Rate of patients	60%	15%	25%
Bleeding frequency	Approx. 30 times/year	One/a few months	One or twice/year

National Hemophilia Foundation Hemophilia A GeneReviews

Unmet Medical Needs in Hemophilia A

Concept of ACE910 FVIIIa-mimetic Bispecific Antibody



Mode of action

Support the interaction between FIXa and FX

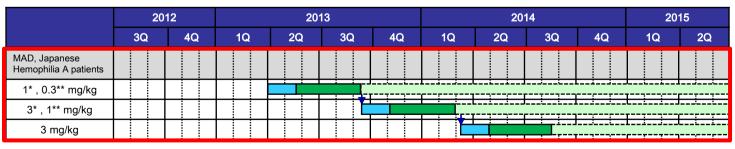
Promote FX activation

Accelerate coagulation

Expected features of ACE910

- Subcutaneous injection (SC) available, longer half-life, low dosing frequency
- Effective in patients irrespective of the presence of FVIII inhibitors
- Unlikely to induce FVIII inhibitors

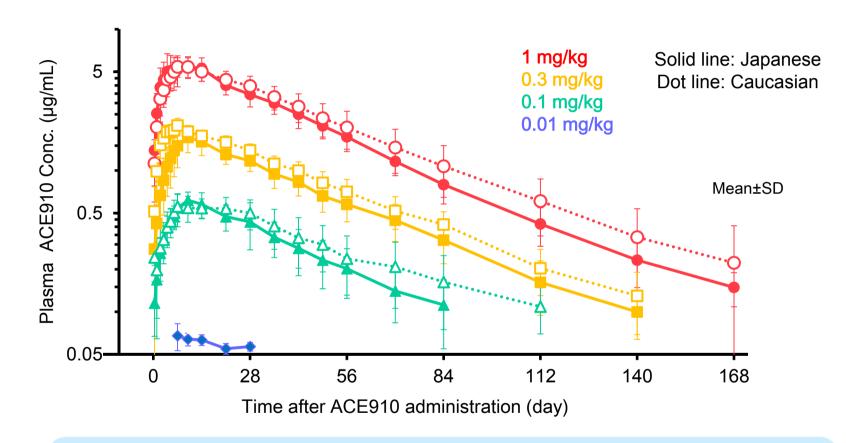
Kitazawa, et al. Nature Medicine 2012;18(10):1570


Sampei, et al. PLoS One 2013;8(2):e57479

Muto, et al. J Thromb Haemost 2014:12:206

Phase I study

	Subject	Dosage
Part A	Healthy volunteers: Japanese n=40 (placebo n=10)	0.001~1 mg/kg (5 dose), inter-individual, single-ascending dose
Part B	Healthy volunteers: Caucasian n=24 (placebo n=6)	0.1~1 mg/kg (3 dose), inter-individual, single-ascending dose
Part C	Hemophilia A patients: Japanese n=18	0.3~3 mg/kg (3 dose), inter-individual, multiple-ascending dose



* : Initial loading dose

** : Second and subsequent doses

Healthy Volunteer Data: Time Course of Plasma ACE910 Concentration

- Dose-proportional increase in Cmax and AUC was observed.
- The mean half-life was 28.3 to 34.4 days.
- The Japanese and Caucasian subjects showed similar PK profiles.

Patient Data

Safety and Prophylactic Efficacy Profiles of ACE910, a Humanized Bispecific Antibody Mimicking the FVIII Cofactor Function, in Japanese Hemophilia A Patients Both without and with FVIII inhibitors: First-in-Patient Phase 1 Study

Midori Shima¹, Hideji Hanabusa², Masashi Taki³, Tadashi Matsushita⁴, Tetsuji Sato⁵, Katsuyuki Fukutake⁶, Naoki Fukazawa⁷, Shingo Maisawa⁷, Koichiro Yoneyama⁷, Keiji Nogami¹

¹ Nara Medical University, ² Ogikubo Hospital,

³ St. Marianna University School of Medicine Hospital,

⁴Nagoya University Hospital,

⁵ University of Occupational and Environmental Health Hospital,

⁶ Tokyo Medical University Hospital, ⁷ Chugai Pharmaceutical Co., Ltd.

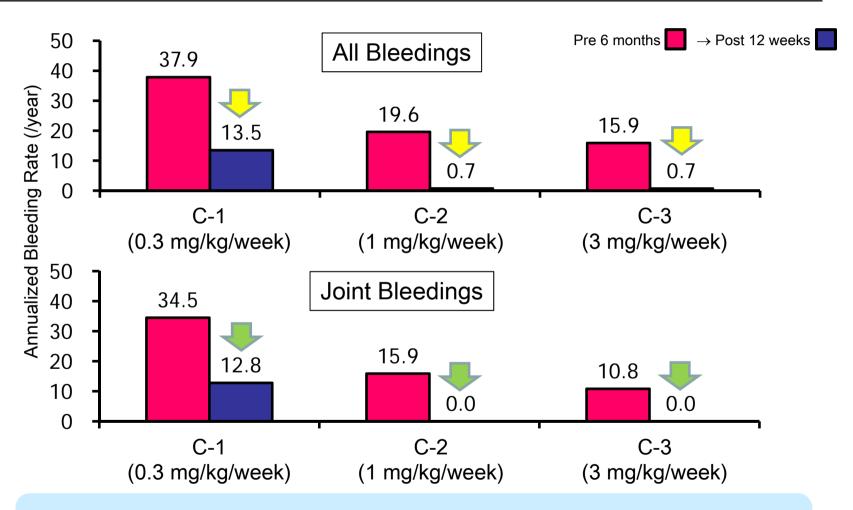
Demographics and Baseline Characteristics

- The Annualized Bleeding Rate (ABR) of 6 months prior to this study in the C-1 cohort was higher than that of other 2 cohorts.
- Other demographic characteristics were well-balanced between the cohorts.

		C-1 cohort n=6	C-2 cohort n=6	C-3 cohort n=6
Median age, years (min - max)		32 (17 - 51)	30 (12 - 58)	33 (12 - 58)
Pts age <18 years, n	(%)	1 (16.7)	1 (16.7)	1 (16.7)
Median weight, kg (min - max)		60.4 (40.8 - 81.2)	56.1 (48.1 - 81.7)	66.0 (48.8 - 78.2)
Non-inhibitor pts, n (%)	%)	2 (33.3) 4 (66.7)	2 (33.3) 4 (66.7)	3 (50.0) 3 (50.0)
ABR 6M prior to study entry,	Mean (SD) Median (min - max)	37.9 (25.2) 32.5 (8.1 - 77.1)	19.6 (9.8) 18.3 (10.1 - 38.6)	15.9 (11.9) 15.2 (0 - 32.5)
Target Joint*, n (%)		6 (100)	6 (100)	3 (50.0)

^{*} Joint in which 3 or more spontaneous bleeds have occurred within a 6-month period.

Safety Results



- All AEs were of mild intensity, except for 2 moderate AEs not related to ACE910 administration
 - Upper respiratory tract infection (C-2 cohort), headache (C-3 cohort)
- One patient in the C-2 cohort discontinued ACE910 administration due to injection site erythema of mild intensity.
- No evidence of clinically relevant abnormalities of coagulation as indicated by clinical findings or laboratory tests (D-dimer, FDP, TAT and PT-INR).
- No thromboembolic AEs were observed, even when ACE910 was given concomitantly with FVIII products or bypassing agents as on-demand therapy for bleeding events.
- No anti-ACE910 antibodies were developed during the 12 weeks course of ACE910 administrations.

Well-tolerated safety profile at 12 weeks course of administration

The Mean ABR by Week 12

- The mean ABR in all cohorts were remarkably reduced.
- Joint bleeding was completely controlled in the C-2 and C-3 cohort.

Summary & Conclusion

Safety	 Once-weekly SC ACE910 administration up to 3 mg/kg was well tolerated. No anti-ACE910 antibodies were developed in the 12 weeks of the study.
PK&PD	 Plasma ACE910 trough level increased in a dose-dependent manner. Shortening of APTT and promotion of thrombin generation were observed after the start of ACE910 dosing.
Efficacy	 Once-weekly SC ACE910 prophylaxis demonstrated a promising efficacy profile in severe hemophilia A patients irrespective of the presence of FVIII inhibitors. No joint bleeds were observed in 1 mg/kg and 3 mg/kg groups in the 12 weeks of the study.

ACE910 is expected to offer an effective and convenient prophylactic treatment option for hemophilia A, including patients with FVIII inhibitors and/or with venous access difficulty.

Contacts: Corporate Communications Dept.

Media Relations Group

Tel: +81 (0)3-3273-0881 Fax: +81 (0)3-3281-6607

e-mail: pr@chugai-pharm.co.jp

Koki Harada, Hiroshi Araki, Sachiyo Yoshimura, Chisato Miyoshi

Investor Relations Group

Tel: +81 (0)3-3273-0554 Fax: +81 (0)3-3281-6607

e-mail: ir@chugai-pharm.co.jp

Toshiya Sasai, Takayuki Sakurai, Tomoko Shimizu, Yusuke Tokita, Shingo Kumagai,